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Abstract

An identification procedure is presented for the stiffness distribution in statically indeterminate structures. The proposed
procedure analogous to direct calculation of the dynamic stiffness, the inverse-problem algorithm used in it is based on a
finite element (FE) model of the damaged structure with unknown stiffness distribution and on a subset of measured
vibration frequencies and vibration modes. The bending stiffness is updated for each element in the FE-model by an
iterative procedure. In order to improve its practicability, the effect of random measurement noise is taken into
consideration. A numerical study of statically indeterminate beams shows that it is able to locate both localized and
multiple damage and determine its severity with a high level of reliability.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Damage identification in existing civil structures is a challenging problem from both the theoretical and
practical points of view. The main challenge stems from the inevitable uncertainty involved in modeling and
experimental characterization of complex physical phenomena.

Non-destructive global dynamic testing for damage assessment has attracted growing interest over the last
few years. The basic idea of methods, that examine changes in dynamic properties, is that modal parameters,
notably natural frequencies, mode shapes, and modal damping, are functions of the physical properties of the
structure (mass, damping, stiffness, and boundary conditions). Therefore, changes in physical properties of the
structure will cause changes in modal properties. Damage identification procedures generally comprise three
main levels: detection, location and quantification. Every level provides an increasing amount of information
about damage. The first level is most important and probably the most difficult. Most existing methods deal
with the last two levels, in which damage locations are detected at first, and then damage extents are estimated.

Detection methods using changes in modal parameters fall under two main distinct approaches: the
“response-based”, Natke [1], and the “model-based”, Vepa [2]. The first approach compares the modal
parameters of the undamaged structure with those of its damaged condition, whose severity can be assessed
through the changes in the natural frequencies, mode shapes, and damping ratio. Usually applied through
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optimization techniques and sensitivity methods. The response-based approach is highly effective except for
one major drawback, the model parameters of the undamaged structure have to be known, but for many
realistic existing structures are often unavailable. In the second approach, the objective is a set of parameters
of a mathematical model of the considered structure (in most cases a finite element (FE)-model), with a view to
an optimal correlation between experimental measurements and numerical calculations. These parameters are
then used for assessing the damage. The main drawback of this approach is that one has to introduce the
current existing damage in the numerical model of the structure, in the other words, damage has to be already
known and quantified, which is not an easy task in the practice. Another important drawback of this approach
is the heavy computational effort involved. However, it has a major advantage over its response-based
counterpart in that only damaged-condition data are needed (inverse-problem technique). This advantage
combined with modern computer resources, opens the way to new areas of application fields of these methods.
Accordingly, the model based approach has been adopted in the present study.

Various identification techniques have been developed over the years. The main relevant works on this topic
are as follows:

Doebling et al. [3,4] and Sohn et al. [5] compiled comprehensive literature reviews on damage identification
methods. A survey of model updating methods is found in Friswell and Mottershead [6], and Mottershead and
Friswell [7]. Alvandi and Cremona [8] reviewed common vibration-based damage identification techniques,
and Salawu [9] reviewed methods of damage detection through changes in frequency.

For the proposed concept to be fully realized, several basic obstacles still need to be overcome, namely (a)
measurement uncertainty and inadequate test data, (b) systematic errors, (c) in real structures—damage-
induced redistribution of the internal forces and moments, with the resulting deviation from boundary
conditions and support layout of the FE model. In these circumstances, many of the identification methods
reported in literature were confined to simple structures, usually to statically determinate beams, and in order
to avoid the influence of imperfect boundary conditions on the model parameter, many of the experimental
investigations reported in the literature focused on testing free—free beams, see, for example, Refs. [10-16].

This paper proposes a method, analogous to direct calculation of the dynamic stiffness, Maeck and De
Roeck [12]. The inverse-problem algorithm used in it is based on an FE model of the damaged structure with
unknown stiffness distribution and on a subset of measured vibration frequencies and vibration modes. Since
damage consists typically of local phenomena, its effect on the lower frequency in the global measured
response of the structure may be insignificant. Pandey et al. [17] found that the curvature mode shape is more
sensitive to local damage. Yet, accurate estimation of the curvature mode shapes from experimental data is
difficult and usually involved a post-processing procedure. Maeck and De Roeck [12] developed a procedure
to calculate the modal curvature from displacement mode shape, their procedure is mostly adequate to
statically determine beam. For more complex types of structure, their method is somewhat difficult to be
applicable. As a solution, this paper recommends a direct procedure readily implemented in an FE-model
suitable both for statically determinate and indeterminate structures.

The stiffness distribution is identified the damage location and its severity evaluated simultancously. The
advantage of the proposed procedure is the need for a very small number of mode shapes (in theory, even a
single mode suffices). In order to improve its practicability, the effect of random measurement noise is taken
into consideration. A numerical study of statically indeterminate beams (Section 4) shows that it is able to
locate both localized and multiple damage and determine its severity with a high level of reliability.

2. Theoretical background

The modal characteristics of an undamped system are described by the following analytical eigenvalue
equation:

K¢, = oM@, fori=1,...,n, (1)

where K and M are the analytical global stiffness and mass matrices, respectively, usually obtained by an FE-
model; @; and ¢; are the ith natural frequency and ith mode shape of the structure; and  is the total number of
obtainable mode shapes.
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In practice, natural frequencies and mode shapes are measured values, therefore,
(OF #* (Di’
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where w; and ¢, are the ith measured natural frequency and the ith measured mode shape. Consequently, their
substitution in the above analytical equation will not satisfy the equilibrium condition.

Common assumption in damage identification procedures is that damage in a structure effects only its
stiffness matrix and not the mass matrix. Therefore, the eigenvalue equation for a damaged structure based on
measured data should read

Ksp; = oMo, fori=1,...,n. (€)

K, is the global stiffness matrix of the damaged structure and it is unknown in the identification procedure.

3. Identification procedure

The proposed procedure identifies the stiffness distribution for statically indeterminate beams. For the case
of statically indeterminate structure, the reaction forces and consequently the internal forces and moments
depend on the stiffness distribution of the structure. Therefore, an iterative procedure is applied to the
numerical model in order to identify the bending stiffness distribution.

Since experimental process always involves some level of noise and inaccuracies; as a first step, smoothing
should be applied to the given measured mode shapes, see Section 3.4. The full proposed identification
procedure is given in Fig. 1.

3.1. Direct stiffness calculation

The procedure makes use of the basic relation, from the beam theory, that the dynamic bending stiffness
(EIL,) in each section is equal to the internal bending moment (M,) in that section divided by the corresponding
curvature (second derivative of bending mode):

El,=—-M,/y,. 4)

3.2. Calculation of the curvature (y,)

Calculation of the curvature (first and second derivatives) from measured mode-shapes, e.g. by using
central-differences approximation, is extremely sensitive and yields fluctuating and inaccurate results. With FE
as the numerical model, the second derivative of the displacement functions is obtainable directly from the
original shape functions. For Bernuli-Euler beam element, the displacement is related to its four degrees of
freedom

4
e =y P (ou, (5)
i=1

where Y(x) denotes the displacement functions of the element due to a unit displacement ug"), and the
curvature is

4
7= 3 LV 0 ©)
i=1

dx?

where ug") are given from the deflection of the measured mode shape.

The calculation of the curvature by this procedure gives directly the curvature mode shape and is an
adequate calculation for a general type of element.
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Fig. 1. Iterative scheme for calculation of the stiffness distribution.

3.3. Calculation of the internal modal moment

The eigenvalue problem of the undamped system of the damaged structure is given in Eq. (3). Common
assumption in damage identification procedure is that damage does not change the mass distribution of a
structure, and the mass matrix is considered to be the analytical one. Therefore, the right-hand side of Eq. (3)
is known and the system can be seen as pseudo-static: for each mode (i) the internal forces and moment are
due to the internal load, which can be calculated as the product of local mass and local acceleration, Maeck
and De Rock [12]:

P = »’Me;. (7

Using FE model as the numerical model, the components (i) of the mass matrix are calculated by the
following analytical equation:

L.
mj = /o m(X)W (xX);(x) dxx. ®)

Therefore, the jth component of the pseudo static load, P is read as

" s ndf  .L, ®)
A =03 [ meomn ) axel ®
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where (pf-k) is the kth degree of freedom of the measured mode shape, and ndf'is the total number of degree of
freedom in the beam and Eq. (3) becomes

K, = P?. (10)

The only unknown variables in Eq. (10) are the coefficients of the stiffness matrix.

In this paper, in order to detect damage in a structure the bending stiffness is updated in each element. This
means that damage in the structure is related to the reduction in the bending stiffness in each element EI¢, and
is read as

EIY = ¢,EI", (11)

where EIY represents the analytical dynamic stiffness of the undamaged structure in each element, and the
unknown are £, (0<¢,<1). Such treatment of the damage guarantees that the resulting matrices are positive
definite, and imposes the connectivity of the elements in the structural mode.

In order to reduce the number of unknown parameters, a representative pattern of the reduction in the
stiffness matrix due to cracks can be used, see Chrisides and Barr [18], Abdel Wahab et al. [11], Cerri and
Vestroni [19], Maeck et al. [14], Friswell and Penny [20], Shinha et al. [21], Ren and De Roeck [16]. In all the
above cracked models, crack is associated to reduction of the element bending stiffness, and is described by a
simple analytical function with small number of unknown parameters. Some of the models consider local
cracks with local stiffness reduction (Chrisides and Barr [18], Shinha et al. [21]), and the other to global
cracked zone.

For the case of a statically indeterminate structure, the following iterative process is applied to the
numerical model:

The modal internal forces and moments are determined in each element by solving the local element
equation

Nieter — dkieterfl qDi)’ter’ (12)

where dkie“"‘"l is the local damaged stiffness matrix of the e-element, which is known from the previous
iteration (the first iteration can uses the stiffness distribution of the analytically undamaged structure), and
@' is the vector of displacement and rotation of the e-element calculated by the global equation:

Ki}er71¢i[er —P. (13)

Then, the stiffness obtained from the current iteration in each element is calculated by
) iter
E[ = ———. (14)
Xe

The curvature y, is calculated directly from the derivative of the mode displacement, Eq. (6).

On the one hand, the stiffness distribution is conveniently identified via a single mode shape; on the other,
the curvature mode shape appears in the denominators and may vanish along the structure, so that inaccurate
results would be obtained for those elements. Therefore, the procedure first identifies, for each given mode
shape, the elements in which the curvature mode shapes vanish, and then uses other modes to identify the
stiffness.

3.4. Smoothing the measured mode shapes

The measured mode shapes are obtained in vibration tests. As these always involve some level of noise and
inaccuracies, smoothing is called for. Optimal smoothing is expected to reduce the noise effect without
determent to the measurement accuracy of local damage. There are two main approaches to smoothing—
global and local. Under the global approaches the measured deflection is fitted to a polynomial function by a
least-squares technique. Its disadvantage is a risk of deletion or distortion of the damage effect, which is
mostly local. The local approach, proposed by Meack and De Roeck [12] involved the so-called a weighted
residual penalty-based technique, and is adopted here with a few improvements. Its main principle lies in
dividing the beam into a number of segments separated by nodes corresponding to the measurement points.
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Fig. 2. Degrees of freedom for smoothing process.

Each node has two degrees of freedom corresponding to the modal normal displacement v and the modal
rotation ¢, which are approximated independently. Linear shape functions N, are used, see Fig. 2. The
objective function (IT), which has to be minimized, contains the difference of the approximated and measured
mode shapes with an additional penalty term imposing continuity of rotation in an average smeared way

/(v—q)m) ax+ple /<<z> qo,,,>2dx+oc—/ <¢——) dx, (15)

where @¢ and ¢! denotes the measured displacement and rotation mode shape, respectively, and L is the
length of the beam segment (segments are chosen in such a way that nodes coincide with measurement points).

The two first terms indicates that average the difference has to be minimized. If rotations are not
available from measured mode shapes, f = 0, otherwise = 1. It is worth noting that measuring rotation is
difficult and usually are not available. Even though, the proposed procedure can give useful results without
rotation data, by only having the displacement mode shape, see Section 4.2. The last term filters the measured
errors and thus smoothes the deflection and rotation curves. The weight of this extra condition is set by the
dimensionless penalty factor . The value of this penalty factor is difficult to choose, values which are too high
causes locking of the system while too low values will not filter the measurement error. In the following
investigation, o is chosen in such away that the median of the relative error on the modal deflections is less
than 5%.

Deriving the objective function, Eq. (15) for the unknown degrees of freedom, substituting the shape
function and solving the integral expressions, an analytical form for the governing system on segment level:

_Le Le2 Le ng T Ie Ie
N al’ o o al’ o ‘/’m31 " (Pmé
Le3 Le3 LeZ Le3 Le3 U1 (Pr Lé’; (,D Le';
+ﬁ ) oc6+/36 b, ﬁml3 +ﬂm2
= . 16
L—e + ol —aLez e q’ill‘ + §0m2L ( )
3 3 2 3 b, 6 3 3 3
L¢ e Le Ie
symm. O‘T + ﬁT [))(Pml [")(Pnﬂ

Assembling of the above matrix in the global we obtain a symmetric, non-singular system of the same order
as the original stiffness matrix. After smoothing of the measured mode shape, the identification procedure can
be applied.

4. Results and discussion

In order to verify the procedure outline above statically indeterminate reinforced concrete beams are
examined. In the current numerical examples, damage along the beam is associated to cracks and represented
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by reductions of bending stiffness, the cracked model is taken from Abdel Wahab et al. [11]. In their work,
cracked zone is simulated by a reduction in the E-modulus, and the following analytical function was
proposed:

2
E = Ey[1 — (1 — a)cos’t] witht:%(#) for BL/2<x<L/2

E=E, for0<x<pL/2

(17)

Where, here, «, f and n are the damage parameters, L is the beam length and x the distance along the beam
measured from the center line.

For all the examples presented below, the first 4 modes are used in the identification procedure. It is worth
noting that except few special cases (especially cases involved single damaged pattern) the identification
procedure yields reliable results with only one single mode.
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Fig. 3. Geometry of beam and damaged pattern: (a) single, (b) continues and (c) multiple.
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4.1. Simply-supported— clamped beam

For the case of beam with analytical mode shapes (no noise), three damaged patterns are examined
involving a sequence of number of damaged elements: one (no. 16) which count as “‘single”, two (nos. 10-15)
which count as ‘“‘continuous” and three (nos. 3-5, 1012, 17-19), which count as “multiple”, see Fig. 3.
All damaged elements underwent a maximum stiffness reduction of 30%.

For the first damage pattern (Fig. 3a), the curvature mode shapes vanish as follows: elements nos. 1, 15, 16,
first mode; nos. 1, 9, 10, 17, 18, second mode; nos. 1, 6, 7, 13, 18, 19, third mode; nos. 1, 5, 10, 14, 15, 19,
fourth mode. Accordingly in each mode, the procedure overlooks the bending stiffness of the above elements.
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Fig. 4. Stiffness distributions obtained by the first 4 modes, for simply supported—clamped beam with a single damage: (a) mode no. 1,
(b) mode no. 2, (c) mode no. 3, (d) mode no. 4. last iteration.

&.=ElL/El

2 4 6 8 10 8 10
iteration no.
(c) (d)
1 ¥ ¥ K 1 F o
\ « v Ke=l4
=] \ %/ 5 \Sl(
@ 0.8 |\ , 5 g 09
> \ e=16 )
o 0.6 \/ o 0.8
bl =18 ad
e=16
0.4 0.7
2 4 6 8 10 2 4 6 8 10
iteration no. iteration no.

Fig. 5. Convergence of stiffness, for chosen elements, for simply supported—clamped beam with a single damage: (a) mode no. 1, (b) mode
no. 2, (c) mode no. 3, (d) mode no. 4. element no. 16th, element no. 12th/19th/18th/14th.
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Fig. 4 shows the predicted stiffness distribution in each mode. The dashed lines represent the stiffness
obtained through iterations; the solid lines are result from the last iteration. The first iteration assumes
analytical undamaged stiffness distribution. In this case, all modes yield, independently, the real stiffness
distribution, and averaged result from the four modes gives exactly the real stiffness distribution. Convergence
study is performed for the 4 modes for selected elements, see Fig. 5. It is seen that generally convergence is
quite fast (usually after 4 iterations). Yet, convergence at elements in which curvature mode shape vanish is
slow, as can be seen in element no. 18, third mode (Fig. 5¢); no. 14, fourth mode (Fig. 5d). Convergence of the
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Fig. 6. Stiffness distributions obtained by the first 4 modes, for simply supported—clamped beam with continuous damage: (a) mode no. 1,

(b) mode no. 2, (¢c) mode no. 3, (d) mode no. 4. last iteration.
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Fig. 7. Stiffness distributions obtained by the first 4 modes, for simply supported—clamped beam with multiple damage: (a) mode no. 1,
(b) mode no. 2, (c) mode no. 3, (d) mode no. 4.



Y. Goldfeld | Journal of Sound and Vibration 304 (2007) 918-931 927

damaged element (e = 16) is from above, since the first iteration assumes undamaged stiffness, while
convergence of the other elements is from below.

Results for the second and third damaged pattern (Fig. 3b and c, respectively) are given in Figs. 6 and 7,
respectively. Here again, the procedure succeeds to predict the real stiffness distribution. Yet, slow
convergence occurs at elements where curvature mode shapes vanish (the same elements as for the first
damaged pattern).

In order to study the effect of measurement noise on the accuracy of the proposed procedure, the
analytical mode shapes were distorted by 10% random noise. The distorted signal is represented, see Liu
and Yang [22] as

9y = G0 +77 3| Prna . (18)
where ¢; and @;; are the mode shape components of the ith mode at the jth degrees of freedom with noise and
without noise, respectively; y;f) is the random number with zero and variance 1 (normal distribution); 6¢ is the
random noise level; @, ; is the largest component in the ith mode shape. It is worth noting that noise
simulation must be added to the signals before applying the identification procedure. However, noise added to
the mode shapes might be presented as an evaluation criteria but it does not signify the site measurement
noise.

The results are given in Figs. 8 and 9 for the first and second damaged pattern, respectively. For both cases
the distorted mode shapes were smoothed with weighted factor of o = 10 (see Eq. (15)). The norms of the
relative error (agf)) of the smoothed mode shapes in each mode (i) for the first damaged pattern being
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Fig. 8. Stiffness distributions obtained with distorted modes (error = 10%), for simply supported—clamped beam with a single damage:
(a) mode no. 1, (b) mode no. 2, (¢) mode no. 3, (d) mode no. 4, (e) averaged result. predicted stiffness distribution,
......... real stiffness distribution.
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Fig. 9. Stiffness distributions obtained with distorted modes (error = 10%), for simply supported—clamped beam with continuous
damage: (a) mode no. 1, (b) mode no. 2, (c) mode no. 3, (d) mode no. 4, (e) averaged result. predicted stiffness distribution,
......... real stiffness distribution.

ag) = 0.411%, oﬂpz) = 1.25%, ag) = 4.67%, og‘) =10.97%, and for the second damaged pattern being
o) =0.32%, 0¥ =2.55%, ¢} =5.02%, of) =12.87%. It is seen that the chosen penalty factor was
adequate only for the first 3 modes. The smoothed fourth mode has higher relative error, that is results from
the fourth mode are expected to be less reliable. The norms of the relative error (a%)l) of the procedure for each
mode and for averaged result are also given in the figures. It is seen that the procedure yields reliable
predictions of the bending stiffness distribution, the differences between the predicted stiffness and the real
ones being 3-4%.

The reliability is mainly influenced by the relative locations of the damage and of the vanished curvature
mode shape. For elements with the latter effect, results in the mode in question are expected to be less reliable.
Furthermore, convergence is quite slow around elements where curvature mode shape vanishes. The
procedure converged faster in the second damaged pattern compare to the first damaged counterpart, since
local damage is more sensitive to the location of the vanished curvature.

4.2. Continuous statically indeterminate beam

Continuous reinforced concrete beam with three spans and 4 simple-supports is investigated. The beam is
divided into 35 elements and has 3 damaged zones, see Fig. 10. Here, again the mode shapes were distorted by
10% random noise, and were smoothed with weighted penalty factor of o = 10. The norms of the relative
errors (o) of the smoothed mode shapes for each mode being o) = 0.336%, ¢ = 0.402%, ¢} = 1.165%,
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Fig. 10. Geometry of continuous beam and damage pattern.
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Fig. 11. Stiffness distributions obtained with distorted modes (error = 10%), for continuous beam with multiple damage: (a) mode no. 1,
(b) mode no. 2, (c) mode no. 3, (d) mode no. 4, (¢) averaged result. predicted stiffness distribution, ......... real stiffness
distribution.

ag‘) = 1.414%. It is seen that, here, the smoothed modes are in a good agreement with the distorted ones. The
predicted stiffness distributions from the 4 modes and from averaged result are given in Fig. 11, the norms of
the relative errors (0%)1) are also given in the figure. It is seen that the procedure yields reliable result in
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predicting the stiffness distribution, the differences between the predicted stiffness distribution and the real one
being 3.56%.

In addition to the above a separate parametric study for the case of unknown rotation mode shapes, that is
where only deflections are measured (f = 0 in Eq. (15)) is performed. Results are given in Fig. 12. Fig. 12a
shows the predicted averaged distribution from analytical deflection mode shape. Here, in order to obtain the
rotations, smoothing was applied with « = 0.04. The norm of the relative error of averaged result being
og;r = 1.515%. Fig. 12b shows the predicted averaged result for the case that the mode shapes distorted by
10% random noise. In this case smoothing was applied with o = 5. The norms of the relative errors (¢?) of
the smoothed mode shapes for each mode being ¢! = 0.25%, o\ = 0.32%, o{)) = 1.225%, ¢ = 1.062%.
The norm of the relative error of the averaged stiffness distribution being og; = 4.625%. It is seen that the
proposed procedure succeeds to yield reliable stiffness distribution even though the rotations are unknown
and the deflection mode shapes are distorted.

5. Conclusion

An identification procedure for the stiffness distribution of a statically indeterminate beam is presented. The
algorithm makes use of an FE model and a subset of the measured vibration frequencies and vibration modes.
The proposed method succeeded to identify the stiffness distribution for different damaged patterns.
Furthermore, the procedure was verified for distorted mode shapes and succeeded to identify damage with a
high level of reliability.

In theory, a single measured mode shape suffices for the procedure, but in view of the strong dependence on
the curvature mode shape, inaccuracies are expected at elements in which it vanishes. Therefore, several mode
shapes are needed in order to identify the stiffness distribution with a high level of reliability.
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